Toward the Synthesis of Peloruside A: Fragment Synthesis and Coupling Studies

ORGANIC LETTERS 2003 Vol. 5, No. 4 ⁵⁹⁹-**⁶⁰²**

Ian Paterson,* M. Emilia Di Francesco, and Toralf Kuhn

*Uni*V*ersity Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom*

ip100@cus.cam.ac.uk

Received January 8, 2003

ABSTRACT

The asymmetric synthesis of building blocks 3, 4, and 5, corresponding to C12−**C19, C7**−**C11, and C1**−**C6 segments of peloruside A, is reported, along with boron-mediated aldol coupling studies directed toward the assembly of the complete carbon skeleton of this microtubule-stabilizing macrolide.**

Peloruside A (**1**) is a novel cytotoxic polyketide, isolated by Northcote and co-workers,^{1a} from a New Zealand marine sponge, *Mycale hentscheli*. Elucidation of its structure and relative stereochemistry by extensive NMR studies revealed a polyoxygenated 16-membered macrolide, containing a pyranose ring, with a branched unsaturated side chain at C_{15} . Acting as a potent antimitotic agent, peloruside A inhibits the growth of a range of cancer cell lines at nanomolar concentrations.1

Like paclitaxel (Taxol), recent studies^{1b} have demonstrated that peloruside functions by promoting tubulin polymerization and interfering with microtubule dynamics, inducing apoptosis following arrest of the cell cycle in the G2-M phase. Thus, peloruside now joins an elite group of nontaxane microtubule-stabilizing agents (including the epothilones, discodermolide, eleutherobin, and laulimalide) that have potential as drug candidates for the treatment of solid tumors.² Notably, the apparent^{1b} structural resemblance of peloruside A to the 16-membered macrolide epothilone B (2) ,³ currently in clinical trials as an anticancer drug, hints that it may act as a Taxol/epothilone surrogate by binding in a common site on *â*-tubulin.

As the current supply of peloruside A from the sponge source is limited, an efficient total synthesis is required to

^{(1) (}a) West, L. M.; Northcote, P. T.; Battershill, C. N. *J. Org. Chem.* **2000**, *65*, 445. (b) Hood, K. A.; West, L. M.; Rouwe´, B.; Northcote, P. T.; Berridge, M. V.; Wakefield, S. J.; Miller, J. H. *Cancer Res.* **2002**, *62*, 3356. (c) Hood, K. A.; Bäckström, B. T.; West, L. M.; Northcote, P. T.; Berridge, M. V.; Miller, J. H. *Anti-Cancer Drug Des.* **2001**, *16*, 155.

enable further biological and preclinical evaluation, as well as to initiate analogue chemistry. To this end, we now report the asymmetric synthesis of three peloruside subunits (**3**, **4**, and **5**), along with studies directed toward the assembly of the complete carbon skeleton.

Allowing for the uncertainty over the absolute configuration,^{1a,4} we planned a flexible strategy (Scheme 1) to introduce the 10 stereocenters in **1**. We envisaged an endgame based on a selective macrolactonization of a suitable seco acid derivative such as **6**, whereby, after oxidation of the remaining C_9 hydroxyl group, final deprotection would induce hemiacetal formation and thus generate peloruside A. Retrosynthetic analysis of advanced intermediate **6**, involving disconnections at $C_6 - C_7$ and $C_{11} - C_{12}$, revealed the three subunits **3**, **4**, and **5**, selected as building blocks of comparable complexity. Stereoselective aldol couplings involving methyl ketones **3** and **5** might then be used to assemble **6** in a convergent manner and install the elaborate polyol sequence. To establish the correct 1,3- and 1,5-diol stereorelationships, as indicated in **6** and **7**, respectively, we planned to make use of our 1,5-anti aldol methodology5,6 for implementing the key coupling steps, in combination with 1,3-anti reductions of the resulting *â*-hydroxy ketones. The required 1,2-syn diol relationships embedded in subunits **4** and **5** would be installed by appropriate Sharpless asymmetric dihydroxylations,⁷ while subunit **3** should be available with use of suitable aldol methodology.

First, an efficient and scaleable synthesis of the C_7-C_{11} subunit **4** was developed by starting from neopentylglycol

(5) (a) Paterson, I.; Gibson, K. R.; Oballa, R. M. *Tetrahedron Lett.* **1996**, *37*, 8585. (b) Paterson, I.; Collett, L. A. *Tetrahedron Lett.* **2001**, *42*, 1187.

(8) For related studies on *gem*-dimethyl-containing substrates, see: Ohmori, K.; Nishiyama, S.; Yamamura, S. *Tetrahedron Lett*. **1995**, *36*, 6519.

via a highly stereoselective HWE homologation to give **8** (Scheme 2). Installation of the 1,2-syn diol was then

^{*a*} Conditions: (a) PMBBr, NaH, Bu₄NI, THF, 0 °C; (b) (COCl)₂, DMSO, CH₂Cl₂, -78 °C; NEt₃; (c) (EtO)₂P(O)CH₂CO₂Et, NaH, DMSO, CH2Cl2, –78 °C; NEt3; (c) (EtO)2P(O)CH2CO2Et, NaH,
PhMe/THF, 0 °C; (d) (DHQ)PHN, K2CO3, K3Fe(CN)6, K2OsO4, MeSO₂NH₂, *t*-BuOH/H₂O, 4 °C; (e) DDQ, 4 Å MS, CH₂Cl₂; (f) CSA, 4 Å MS, CH₂Cl₂; (g) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C; (h) DIBAL, CH_2Cl_2/h exane, -50 °C.

accomplished by catalytic Sharpless dihydroxylation methodology.8 When the (*E*)-enoate **8** was treated with AD-mix- α , containing the (DHQ)₂PHAL ligand, the desired diol **9** was obtained in high yield, albeit in moderate enantiomeric purity (82% ee).⁹ From a screening of structurally related chiral ligands, the monomeric $(DHQ)PHN^{10}$ was found to improve the enantioselectivity of the dihydroxylation step, providing **9** in 95% yield and with 96% ee. DDQ-mediated

⁽²⁾ For recent reviews, see: (a) Altmann, K. H. *Curr. Opin. Chem. Biol.* **²⁰⁰¹**, *⁵*, 424. (b) He, L. F.; Orr, G. A.; Horwitz, S. B. *Drug Disco*V*ery Today* **2001**, *6*, 1153. (c) Stachel, S. J.; Biswas, K.; Danishefsky, S. J. *Curr. Pharm. Des.* **2001**, *7*, 1277.

⁽³⁾ Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods, C. M. *Cancer Res.* **1995**, *55*, 2325.

⁽⁴⁾ The absolute configuration of peloruside A has not yet been determined.

⁽⁶⁾ Evans, D. A.; Coleman, P. J.; Coˆte´, B. *J. Org. Chem.* **1997**, *62*, 788. (7) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. *Chem. Re*V*.* **1994**, *94*, 2483.

⁽⁹⁾ The enantiomeric purities of **9** and **14** were determined by chiral HPLC, using the racemic diol as the reference. The absolute configurations were determined by the advanced Mosher method (ref 18 and Supporting Information).

⁽¹⁰⁾ Sharpless, K. B.; Amberg, W.; Beller, M.; Chen, H.; Hartung, J.; Kawanami, Y.; Lübben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. *J. Org. Chem.* **1991**, *56*, 4585.

oxidative cyclization 11 of this mono-PMB protected triol resulted in an unexpected mixture of PMP acetals. The intermediate oxocarbenium ion is trapped by either of the two hydroxyl groups, resulting in a ca. 1:1 mixture of sevenand six-membered cyclic acetals, **10** and **11**. Advantageously, this crude product mixture could be subjected to equilibrating conditions (CSA, CH_2Cl_2) to afford solely the desired, and thermodynamically more stable, six-membered cyclic acetal **11** in 70% overall yield. Silylation of alcohol **11** and DIBAL reduction of the ester group then completed the synthesis of the $C_7 - C_{11}$ subunit 4.

The preparation of the C_1-C_6 methyl ketone **5** commenced from methyl acetoacetate (Scheme 3). Formation of the

 a Conditions: (a) (MeO)₃CH, CSA, MeOH; (b) LiAlH₄, THF, 0 $\rm{^{\circ}C};$ (c) PDC, 4 Å MS, CH₂Cl₂; (d) (MeO)₂P(O)CH₂CO₂Me, NaH, THF, 0° C; (e) DIBAL, CH₂Cl₂, -78° C; (f) PMBBr, NaH, THF, 0 °C; (g) (DHQ)₂PYR, K₂CO₃, K₃Fe(CN)₆, K₂OsO₄, MeSO₂NH₂, *t*-BuOH/H2O, 4 °C; (h) PPTS, MeOH; (i) NaH, MeI, THF, 0 °C; (j) HCl_{aq}, CH₂Cl₂, 0 °C; (k) TBSOTf, 2,6-lutidine, CH₂Cl₂, -78 °C; (l) cat. TBAF, THF.

methyl acetal, followed by a 3-step homologation sequence, afforded enoate **12** (10:1 *E/Z*; 71%). Reduction and PMB ether formation then provided the allylic ether **13** in 85% yield. Again, the Sharpless asymmetric dihydroxylation reaction on **13** required an extensive screening of ligands to enhance the enantioselectivity from 54% ee when using ADmix- α , containing (DHQ)₂PHAL, to 92% ee in 89% yield when using (DHQ)₂PYR. Upon treatment of the resulting diol **14** with mild acid (PPTS, MeOH), the adjacent hydroxyl groups were differentiated by engaging one of them in formation of a tetrahydrofuranyl acetal, while the other was subsequently methylated (NaH, MeI) to provide **15** (92%). Careful acid-mediated hydrolysis of the acetal,¹² followed by silylation with TBS triflate, afforded a mixture of the

desired methyl ketone **5** and the cyclic silylated acetal **16**. Upon treatment with catalytic TBAF, the latter was converted cleanly into **5**.

Next, the remaining peloruside subunit **3**, containing 1,4 related stereocenters at C_{15} and C_{18} and the trisubstituted (*Z*)alkene of the side chain, was prepared by application of our asymmetric boron aldol methodology, making use of the (*S*) lactate-derived ketone **17** (Scheme 4).13,14 Here an aldol

^{*a*} Conditions: (a) *c*-Hex₂BCl, Me₂NEt, Et₂O; HCHO, -78 °C; MeOH, H₂O₂, pH 7 buffer; (b) TIPSCl, imidazole, DMAP, CH₂Cl₂; (c) NaBH₄, MeOH; (d) K₂CO₃, MeOH; (e) Pb(OAc)₄, Na₂CO₃, CH_2Cl_2 , 0 °C; (f) $(CF_3CH_2O)_2P(O)CHMeCO_2Me$, 18-crown-6, KHMDS, THF, -78 °C; (g) DIBAL, CH₂Cl₂, -40 °C; (h) DMP, CH₂Cl₂; (i) (-)-Ipc₂BCl, Me₂CO, Et₃N, Et₂O, -78 °C; MeOH, H_2O_2 , pH 7 buffer; (j) PMBTCA, TfOH, Et₂O.

reaction of 17 with formaldehyde when using c -Hex₂BCl/ Me₂NEt (Et₂O, -78 °C) gave a separable mixture of diastereomers, favoring the expected^{13,15} adduct **18** (92:8 dr, 82% yield of **18**). TIPS ether formation, followed by a sequence^{13a} involving ketone reduction with NaBH₄, benzoate hydrolysis, and glycol cleavage with Pb(OAc)4, provided the enantiomerically pure aldehyde **¹⁹** (88%). Using the Still-Gennari HWE variant,16 homologation of **19** gave the desired (*Z*)-enoate **20** exclusively (94%). Following conversion into aldehyde **21**, an aldol reaction with acetone required reagent control to achieve a good level of diastereoselectivity. Thus, $(-)$ -Ipc₂BCl/Et₃N in Et₂O was employed¹⁷ to give a separable mixture (83:17 dr) from which the desired (15*R*)-adduct **22**¹⁸ was isolated in 65% yield. Finally, PMB ether formation led to the $C_{12}-C_{19}$ methyl ketone **3**.

⁽¹¹⁾ Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. *Tetrahedron Lett.* **1982**, *23*, 889.

⁽¹²⁾ This reaction was accompanied by the formation of the elimination product 2-(4-methoxybenzyloxymethyl)-5-methylfuran.

^{(13) (}a) Paterson, I.; Wallace, D. J.; Cowden, C. J. *Synthesis* **1998**, 639. (b) Paterson, I.; Wallace, D. J.; Vela´zquez, S. M. *Tetrahedron Lett.* **1994**, *35*, 9083.

⁽¹⁴⁾ Ketone **17** was prepared from ethyl (*S*)-lactate in 62% yield by an identical 3-step sequence to that described in ref 13a for the enantiomeric series.

⁽¹⁵⁾ See the Supporting Information for a proof of stereochemistry of aldol adduct **18**.

⁽¹⁶⁾ Still, W. C.; Gennari, C. *Tetrahedron Lett.* **1983**, *24*, 4405.

^{(17) (}a) Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. *Tetrahedron* **1990**, *46*, 4663. (b) Paterson, I.; Florence, G. J. *Tetrahedron Lett.* **2000**, *41*, 6935. (c) Paterson, I.; Oballa, R. M.; Norcross, R. D. *Tetrahedron Lett.* **1996**, *37*, 8581.

⁽¹⁸⁾ The configurations of **22**, **24**, **26**, and **28** were established by 1H NMR analysis of the corresponding (*R*)- and (*S*)-MTPA esters, using the advanced Mosher method, see: Kusumi, T.; Hamada, T.; Ishitsuka, M. O.; Ohtani, I.; Kakisawa, H. *J. Org. Chem.* **1992**, *57*, 1033.

With all three building blocks **3**, **4**, and **5** in hand, we set out to investigate the two key aldol couplings required to assemble the carbon skeleton of peloruside (i.e. aldols #1 and #2, Scheme 1). The results are presented in Scheme 5. With c -Hex₂BCl/NEt₃ the coupling of methyl ketone 3 with the achiral aldehyde 23 proceeded, as expected,⁵ with an excellent level of remote 1,5-anti induction (>95:5 dr) in favor of the desired $(11R)$ -adduct 24 $(88%)$.¹⁸ Hence, it should be possible to exploit this high level of substratebased induction arising from the boron enolate of **3** in combination with a suitable C_{11} aldehyde derived from 4.

We next sought to explore the potential influence of the stereogenic centers contained in ketone **5** and aldehyde **25**, obtained by Dess-Martin oxidation of 4, in the planned C_6 -C₇ coupling (i.e. aldol #2). The *c*-Hex₂BCl-mediated aldol reaction between ketone **5** and isobutyraldehyde served to confirm the anticipated role^{5,19} of the β -methoxy group in securing the desired 1,5-anti stereoinduction, giving ketone **26** with moderate selectivity of 75:25 dr (Scheme 5). The *π*-facial selectivity of aldehyde **25** was then evaluated in aldol reactions with acetone. Not only did we observe low diastereoselectivity with *c*-Hex₂BCl (Table 1, entry 1), but the undesired all-syn product **28** was preferred under a variety of other conditions, particularly using the Mukaiyama protocol (entry 3), thus indicating that 1,2-stereoinduction follows the Felkin-Anh model, where the steric effect from the large alkyl group overrides any electronic control from the α -oxygen substituent in the aldehyde 25. Fortunately, it proved possible by using $(+)$ -Ipc₂BCl¹⁷ to favor the desired (7*S*)-configuration in **27** with 75:25 dr (entry 5). We anticipate that in the $(+)$ -Ipc₂BCl-mediated aldol coupling

between ketone **5** and aldehyde **25**, triple asymmetric induction should amplify this selectivity.17c

Having constructed the β -hydroxy ketone 24 in an efficient manner by employing 1,5-anti stereoinduction in the aldol coupling step, we turned to achieving a suitable reduction to set in place the 1,3,5-triol sequence (Scheme 6). An

Evans-Tishchenko reduction²⁰ on **24** with SmI_2 and EtCHO gave the alcohol **29** exclusively in 88% yield. This 1,3-anti reduction differentiates the C_{11} and C_{13} hydroxyls and provides the $C_9 - C_{19}$ subunit of peloruside.

In summary, we have achieved highly stereoselective syntheses of several peloruside subunits (**3**, **4**, **5**, and **29**), and established that they can be coupled together in the desired manner. Studies toward completing a total synthesis of peloruside A are underway.

Acknowledgment. We thank the EPSRC (GR/S19929), EC (HPRN-CT-2000-00018), Merck Sharp and Dohme, and DAAD (Fellowship to T.K.) for support.

Supporting Information Available: Spectroscopic data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034035Q

⁽¹⁹⁾ The reduced level of 1,5-anti induction is attributed to the bulky C_2 TBS ether adversely affecting the conformation of the stereodirecting methyl ether at C_3 (for a related example, see ref 5b) and/or an opposing influence from the C_2 stereocenter. For a situation where more remote stereocenters win out over the 1,5-effect, see: Paterson, I.; Chen, D. Y.-K.; Coster, M. J.; Aceña, J. L.; Bach, J.; Gibson, K. R.; Keown, L. E.; Oballa, R. M.; Trieselmann, T.; Wallace, D. J.; Hodgson, A. P.; Norcross, R. D. *Angew. Chem., Int. Ed.* **2001**, *40*, 4055.

⁽²⁰⁾ Evans, D. A.; Hoveyda, A. H. *J. Am. Chem. Soc.* **1990**, *112*, 6447.